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Abstract

In recent years a number of quantum computing devices with small numbers of

qubits became available. We present a hybrid quantum local search (QLS) ap-

proach that combines a classical machine and a small quantum device to solve

problems of practical size. The proposed approach is applied to the network

community detection problem. QLS is hardware-agnostic and easily extendable

to new quantum computing devices as they become available. We demonstrate it

to solve the 2-community detection problem on graphs of size up to 410 vertices

using the 16-qubit IBM quantum computer and D-Wave 2000Q, and compare

their performance with the optimal solutions. Our results demonstrate that

QLS perform similarly in terms of quality of the solution and the number of
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iterations to convergence on both types of quantum computers and it is capable

of achieving results comparable to state-of-the-art solvers in terms of quality of

the solution including reaching the optimal solutions.

Reproducibility: Our code and data are available at http://bit.ly/QLSCommunity.

Introduction

The recent years saw rapid progress in development of quantum computing

(QC) devices. Multiple paradigms have been proposed and implemented in

hardware introducing a variety of limitations that must be addressed prior to

the wide application of QC. In particular, noisy intermediate scale quantum

(NISQ) devices are widely expected to be limited up to a few hundred, or

perhaps a few thousand qubits [1], severely restricting the size of the problems

that can be tackled directly. As the potential of these NISQ-era quantum devices

is becoming evident [2], there is an increasing interest in developing algorithms

that leverage the small quantum devices that are becoming available. This

requires the use of hybrid quantum-classical approaches where a problem is

solved across a CPU and a QC device.

The number of qubits in NISQ-era devices available at the time of writing is

not nearly enough to demonstrate quantum advantage, which makes it especially

hard to demonstrate the usefulness of quantum computers to solve real problems.

For example, the possibility of quantum speedup using the hybrid quantum

approximate optimization algorithm (QAOA) for a network problem similar to

the one discussed in this paper (max-cut) is a subject of active discussion. On

one hand, there are theoretical results demonstrating that QAOA for max-cut

problem improves upon best know classical approximation algorithms for certain

graphs [3, 4]. At the same time, there are indications that achieving speedup

using QAOA might require at least several hundred qubits [5]. Research and
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development of quantum algorithms is necessary as the number and quality of

qubits is improving. These quantum algorithms can also be used to improve

classical algorithms [6]. The need for development of new quantum algorithms

was highlighted in the recent National Academy of Science report [7]. One of

the important directions to make quantum computing feasible in the near future

is to use various problem decomposition approaches to solve a large problems

as a set of subproblems. This can be accomplished at various levels such as

problem formulation or at the algorithmic level as demonstrated in this paper.

The decomposition approach might be the key method to achieve a quantum

speedup on even modest-size NISQ devices in near-term future. To support this

claim, there is an important and encouraging work [8], where it was shown that

large combinatorial optimization problems can be effectively decomposed into

subproblems on quantum annealing hardware, while still obtaining high quality

of the overall solution. It was demonstrated for solving embedding problems on

D-Wave quantum computers, but we believe that the same technique can be

used to improve dramatically the speed and performance of QAOA algorithms

on universal quantum computers.

In this work, we introduce the quantum local search (QLS) algorithm for

the network community detection problem that is based on the local search

method [9]. Many different versions of the local search have been applied to

numerous computationally hard problems such as the satisfiability testing [10],

and the traveling salesman problem [11, 12]. Local search is used for problems

where a global solution cannot be computed directly but instead can be iter-

atively approximated in the space of candidate solutions (sub-problems), until

optimal (or sufficiently good). The important feature of QLS is that it is a

hybrid hardware-agnostic algorithm that combines a classical machine with a

small quantum device. In this method, QLS allows us to leverage available
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NISQ-era quantum devices to solve machine learning problems of practical size

for the first time.

A version of the network community detection (also known as graph cluster-

ing) is an unsupervised machine learning problem used to identify sub-structure

as communities in such networks as computer and information infrastructures,

social activities, and biological interactions or co-occurrences. It is used to find

non-trivial topological features, with patterns of connection between nodes that

are neither exactly regular nor random. For example, in metabolic networks,

communities correspond to a series of chemical reactions called metabolic path-

ways [13], whereas in a protein interaction network, communities correspond to

proteins with similar functionality inside a biological cell [14]. In this work we

focus on using Newman’s modularity-based community detection [15].

QLS was applied to solving the 2-community detection problem on real net-

works of up to 410 nodes, while solving a 16 variable subproblem on a quantum

device. To the best of our knowledge, this is the first attempt to tackle prob-

lems of this size using gate-model (universal) quantum computing. Also, QLS

is shown to work with the D-Wave quantum annealer. We explore the potential

of QLS as quantum devices become more and more capable and demonstrate

its potential.

The small size of available quantum devices creates a challenge, since typical

algorithms (both quantum and classical) look at a problem “as a whole”, requir-

ing large amounts of resources to store the description of the entire problem.

While on classical computers storing the problem usually does not constitute a

problem, it becomes a bottleneck when working with quantum computers that

only have limited numbers of qubits and limited connectivity between qubits.

The number of variables that can be represented in a quantum device is depen-

dent on its underlying architecture.
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A problem decomposition approach like local search presents a natural so-

lution to this problem. A local search heuristic starts with some initial solution

and searches its neighborhood iteratively, trying to find a better candidate so-

lution with improved criterion (which is often an objective of the corresponding

minimization or maximization of the problem). If a better solution is found,

it replaces the current solution, and the search continues [16]. Searching the

neighborhood is a local problem and its size can be restricted to fit on a small

quantum device. In QLS for graph community detection, the neighborhood of

the solution is searched by selecting a subset of vertices and collectively moving

them between the communities with the goal of improving the global modularity

metric.

The QLS approach provides an additional benefit of being fundamentally

hardware-agnostic. Local neighborhood search can be encapsulated as a rou-

tine, allowing researchers to easily switch between different hardware implemen-

tations. This is especially useful, since the landscape of quantum computing in

the NISQ era is in a constant state of flux with many QC architectures available

and new development happening constantly. It is not clear at this stage which

architecture will become dominant in future. In this work we demonstrate how

the two most developed and popular current paradigms, universal quantum com-

puting (UQC) and quantum annealing (QA), can be integrated into the QLS

framework and utilized to solve problems of practical size. Both paradigms have

demonstrated great potential on a number of important problems [2, 17–19].

In this paper, we do not aim to analyze performance of quantum optimization

algorithms like quantum annealing or QAOA. Although we do present some

performance results (see Fig. 2), they by no means constitute an exhaustive

comparison with classical state-of-the-art. Instead, they provide motivation for

our work, demonstrating that the subproblems offloaded to quantum solvers are
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not trivial and that hybridization is needed. For benchmarking, analysis and

exploration the reader is referred to one of a number of recent paper analyzing

QAOA performance [3, 5, 20]. In other words, we do not focus on finding and

quantifying quantum speedups. Instead, we focus on a different question: if

these algorithms are indeed capable of providing speedups in the near term,

how can we leverage them to solve practical problems?

It is important to point out that the introduction of a problem decomposition

heuristic like QLS limits the possible quantum speedup. Since to the best of

our knowledge no asymptotic speedups have been shown so far for QAOA or

QA, decomposition schemes limit the multiplicative speedup on the entire global

problem by the multiplicative speedup on a small local subproblem. However,

they still provide a way to take advantage of the small quantum devices that

are becoming available.

The rest of the paper is organized as follows. We begin by introducing

the community detection problem and hybrid local-search schemes. Then we

describe the QC paradigms we utilize and the quantum algorithms used to

perform local search. Finally, we provide the implementation details, present

the results and discuss their significance.

1 The Community Detection Problem

The community detection problem (or modularity network clustering) is an

NP-hard problem [21] with a variety of applications in complex systems [22].

Practical usefulness and complexity make community detection an interesting

problem to tackle using QC. The goal of community detection in a network with

an underlying simple undirected graph G = (V,E) is to split the set of vertices

V into communities such that the modularity is maximized [15]:
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H =
1

4|E|
∑
ij

(Aij −
kikj
2|E|

)sisj =
1

4|E|
∑
ij

Bijsisj , (1)

where the variables si ∈ {−1,+1} indicate community assignment of vertex i

(si = −1 meaning vertex i is assigned to the first community and sj = +1

meaning that vertex j is assigned to the second community), ki is a degree of

i ∈ V , and A is the adjacency matrix of G. In this work, we focus on clustering

the network into two communities. There are several classical approaches to

extend the problem to cases when the number of communities is greater than

2 [15,23].

Community detection using a hybrid quantum-classical approach targeted

for specific quantum architectures has been demonstrated previously. The 2-

community problem was solved using qbsolv and the D-Wave quantum an-

nealer [24] and extended for k-communities [25, 26]. Solving for 2-communities

using QAOA and the IBM Q Experience was shown in [25]. Solving for k-

communities on signed graphs using block coordinate descent [27, 28] and D-

Wave quantum annealer was shown in [29].

2 Quantum-accelerated Decomposition Heuris-

tics for Optimization

Central to the discipline of QC in the NISQ era is the problem of a limited

number of available noisy qubits. For example, at the time of writing, the largest

gate-model QC device available on the cloud was IBM Q 20 Tokyo [30] with

twenty superconducting qubits. Twenty qubits translates into up to 20 variables

due to connectivity constraints. This implies that the maximum number of

nodes of a network we can cluster directly is 20. This example highlights the

challenges of leveraging limited NISQ-era devices to solve practical problems and
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motivates our local-search approach. Note that same considerations apply for

problems other than optimization. For example, similar hybrid approaches have

been applied to Blind Quantum Computation [31–34], and distributed quantum

machine learning [35]. Parallel Quantum Computation (PQC) [36] can be used

to speed up Grover’s search algorithm [37] by dividing a database on which

the search is performed between an ensemble of quantum computers running in

parallel [38, 39].

In response to the challenges of quantum computation in the NISQ era,

a number of decomposition approaches have been explored. The methods de-

scribed in this section use limited in size quantum optimization solvers to search

a restricted neighborhood of a given solution with the goal of finding a better

solution. Here the given solution comes either from running a classical heuristic

solver on a CPU or from the previous iteration. These methods are inspired

by the success of classical large-scale neighborhood local search methods (the

reader is referred to [40] for a survey of local-search heuristics in general and

to [41] for a survey of large-scale neighborhood methods in particular). It is

important to note that unlike this paper, all the works described in this section

focus exclusively on D-Wave quantum annealers.

The first family of methods builds on classical pre-processing methods for

quadratic unconstrained binary optimization (QUBO) problems (see [42] for a

review). One such pre-processing technique is heuristically fixing variables. The

variables are chosen by maintaining a set of elite solutions and fixing the vari-

ables that have the same value across many or all local optima, with the intuition

being that they will have the same values for the global optimum [43]. Sample

persistence variable reduction (SPVAR) [44] in its basic version uses a sample

of solutions (obtained either from a quantum annealer or a classical heuristic)

and fixes the variables that have the same value across the entire sample. Then

8



SPVAR uses a quantum annealer as the solver for the restricted QUBO. This

method was later extended by introducing multistart (multiple samples) and

was extensively benchmarked using both the D-Wave quantum annealer as well

as state-of-the-art classical heuristics for Chimera Hamiltonians [45].

The second family of methods extends iterative large-scale neighborhood lo-

cal search methods. Local search commonly considers the neighborhood of bit

strings that have Hamming distance one from the current solution at each step.

The performance of local search methods can be improved by considering larger

neighborhoods (Liu et al. [46] shows significant performance improvements for

neighborhood of Hamming distance four, equivalent to fixing all but four vari-

ables). Quantum optimizers provide a potentially efficient way to explore these

larger neighborhoods. This rather straightforward idea was introduced in [47]

and extended and rigorously tested in [8, 48, 49]. A similar hybrid tree search

method was presented in [50]. These methods utilize the D-Wave quantum

annealer as the quantum optimizer, enabling them to solve problems with thou-

sands of variables. In this work we limit the subproblem size to be small enough

to fit on the IBM Q quantum computer, limiting the size of the problems we can

tackle. D-Wave provides a set of utilities for problem decomposition, including

a hybrid extension of the tabu search QSage [51].

3 Quantum Local Search

To address the challenges outlined above, we introduce the QLS algorithm.

QLS is a hybrid quantum-classical local-search approach, inspired by numerous

existing local-search heuristics. QLS is motivated by the successful application

of local-search heuristics to a variety of optimization problems. The novelty

of QLS is that it can utilize both quantum annealers and universal quantum

computers. In this work, we apply QLS to the problem of 2-community detection
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on graphs, but the success and versatility of local-search heuristics make us

confident that QLS can be extended to other optimization problems.

In QLS for community detection, the local search starts with a random

assignment of communities to vertices and attempts to iteratively optimize the

current community assignment of a subset of vertices with the goal of increasing

modularity. Here the space of potential community assignments of a subset of

vertices plays the role of the neighborhood where the local search is performed.

At each iteration, a subset X ⊂ V is populated by selecting vertices with the

highest potential gain in modularity obtained when changing their community

assignment. This can be done efficiently [15] since at each iteration we only need

to update the gains of vertices in X and their neighbors. Then at each iteration,

the community assignment of the vertices in the subset X (subproblem) is opti-

mized using a routine that includes a call to a quantum device. The local search

proceeds until it converges. We define convergence as three iterations with no

improvement in modularity. Note that in general it is not necessary to consider

all vertices before convergence: in the 2-community problem, random initial

assignment would be correct for 50% of vertices on average. Our approach is

outlined in Algorithm 1.

Algorithm 1 QLS Community Detection

solution = initial guess(G)

while not converged do

X = populate subset(G)

// using IBM UQC or D-Wave QA

candidate = solve subproblem(G, X)

if candidate > solution then

solution = candidate

The subproblem of optimizing community assignment of the subset is formu-

10



lated by fixing community assignment for all vertices not in the subset (i 6∈ X)

and encoding them into the optimization problem as boundary conditions. This

is a commonly used technique in many heuristics [52, 53]. Denoting fixed as-

signments by s̃j , the subproblem can be formulated as:

Qs =
∑
i>j|i,j∈X 2Bijsisj +

∑
i∈X

∑
j 6∈X 2Bijsis̃j

=
∑
i>j|i,j∈X 2Bijsisj +

∑
i∈X Cisi,

where Ci =
∑
j 6∈X 2Bij s̃j

(2)

Clearly, maximizing (2) can only increase global modularity (1). The objec-

tive defined in Eq. (2) can be optimized using a QC algorithm. The exact way

the optimization is performed can vary between different QC implementations,

making our approach extendable to new emerging QC platforms. We demon-

strate this portability by implementing two subproblem optimizing routines that

use IBM Q 16 Rueschlikon [30] and D-Wave 2000Q [54]. Additionally, we imple-

ment a subset optimization routine that uses the classical Gurobi solver [55] for

quality comparison. The choice of Gurobi is not of importance, since for sub-

problems with 16 variables any classical integer programming solver is capable

of finding the optimum.

4 Quantum Computing Paradigms

Quantum annealing (QA) is a form of adiabatic quantum computation (AQC) [56].

QA solves an optimization problem by encoding it as an Ising model Hamilto-

nian, with the ground state of that Hamiltonian corresponding to the global

solution of the optimization problem. The Ising Hamiltonian describes the en-

ergy of a collection of n spin variables, with each variable being in one of two spin

states (±1). A spin configuration describes assignment of states to spin vari-

ables, with si denoting the state of spin variable i (note that the 2-community
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problem maps naturally to this system, with the resulting spin state, si, de-

noting community assignment). The energy of a configuration is then defined

by:

H(s) =
∑
i>j

Jijsisj +
∑
i

hisi (3)

where hi correspond to external forces applied to spin variables, and Jij to

coupling strengths between pairwise spin interactions [56].

QA finds the ground state of the objective Hamiltonian by performing a

quantum evolution. As the initial Hamiltonian, QA uses a transverse field

Hamiltonian. It introduces quantum fluctuations that help the annealing pro-

cess to escape local minima by “tunneling through” hills in the energy landscape,

enabling the evolution to move faster than adiabatic requirement would allow.

As the evolution is performed, the transverse field Hamiltonian is slowly “turned

off” (scaled with a coefficient decreasing to 0), such that the evolution finishes

in a system described by the problem Hamiltonian [56].

Since AQC was introduced in 2000 by Farhi et al. [57], D-Wave Systems

Inc [54], IARPA’s QEO effort [58] and other researchers [59] have achieved a

lot of progress in developing a system implementing QA [56] and applying it to

a variety of problems, including optimization problems on graphs [24], machine

learning [60], traffic flow optimization [61], integer factoring [62] and simulation

problems [63]. Optimization problems can be solved by QA when formulated in

the Ising form (2) or as a quadratic binary optimization (QUBO).

Universal (or gate-based) quantum computing was introduced in the 1980s [64]

and has seen great theoretical advances since. Shor’s [65] and Grover’s [37] algo-

rithms are two most famous examples of quantum algorithms with theoretically

proven speedups over classical state-of-the-art. Universal quantum computing

has been implemented in hardware by a number of companies, national labora-

tories and universities [66–70].
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To optimize (2) on a universal quantum computer, we use a hybrid quantum-

classical approach, Quantum Approximate Optimization Algorithm (QAOA) [71,

72]. Similar to QA, a problem is encoded as an objective Hamiltonian H. Then a

quantum evolution is performed starting with some fixed initial easy-to-prepare

state (traditionally, uniform superposition over computational basis states is

used). The difference is that unlike QA, in which the evolution is analog, in

QAOA the evolution is performed by applying a series of gates parameterized

by a vector of variational parameters θ. A hybrid approach, combining the quan-

tum device performing the evolution and a classical optimizer, finds the optimal

variational parameters. QAOA starts with an initial set of variational parame-

ters θ0. At each step, a multi-qubit state |ψ(θ)〉 parameterized by the variational

parameters θ is prepared on the quantum co-processor. Then a cost function

E(θ) = 〈ψ(θ)|H |ψ(θ)〉 is measured and the result is used by the classical op-

timizer to choose new parameters θ with the goal of finding the ground-state

energy EG = minθ 〈ψ(θ)|H |ψ(θ)〉. QAOA provides a viable path to quantum

advantage [73], making it a good algorithm to explore on near-term quantum

computers.

5 Results and discussion

We implement the classical part of QLS in Python 3.6, using NetworkX [74]

for network operations. The subproblem solvers are implemented using QA (D-

Wave SAPI), QAOA (IBM QISKit [75]) and the classical Gurobi solver [55].

Our framework is modular and easily extendable, allowing researchers to add

new subproblem solvers as they become available. The framework is available

on GitHub at http://bit.ly/QLSCommunity.

In order for a subproblem to be solved on the D-Wave system, the problem is

embedded onto the physical layout (Chimera graph). The clique embedder [76]
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Fig 1. Box-plots showing the range of modularity scores for 2-community
detection (left, greater is better) and number of solver calls (right, less is
better) respectively for the three different subproblem solvers. The results
show that the proposed approach is capable of achieving results close to the
state-or-the-art (Global Solver)

is used to calculate an embedding of a complete 16-variable problem once and

is reused for each subproblem. In this work, we utilized D-Wave’s Solver API

(SAPI) which is implemented in Python 2.7, to interact with the system. We

used the D-Wave 2000Q which has up to 2048 available qubits. Subproblems

of approximately 64 variables can be solved on the the 2000Q, however, for a

fair comparison, we limit ourselves to up to 16 variables. The D-Wave system is

intrinsically a stochastic system, where solutions are sampled from a distribution

corresponding to the lowest energy state. For each subproblem, the best solution

out of 10,000 samples is returned.

The QAOA subproblem solver is implemented using the IBM QISKit frame-

work. We ran QAOA with RYRZ ansatz [77] on the IBM 16 Q Rueschlikon [30]

with 16 qubits. For optimization of the variational parameters we used a

SciPy [78] implementation of Constrained Optimization BY Linear Approxima-

tion (COBYLA) method [79]. For each subproblem, we performed optimization

of the variational parameters θ using a high-performance simulator [80] and ran

QAOA with optimized parameters on a quantum device using the IBM Q Ex-

perience [30] cloud service. We allowed COBYLA 100 function evaluations (i.e.
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Fig 2. A projection of QLS performance as the hardware size of quantum
devices increases. (A) Projected of QLS performance as the quality of the
local search solver solution is improved. The projection is performed by
comparing the performance of classical solver Gurobi with time limit fixed at
0.25s (D-Wave time to solution) and Gurobi with time limit 1000s (projected
good solution). The assumption is that the new quantum optimization
algorithms would be able to scale and provide results of the same quality as
Gurobi with time limit 1000s while taking approximately the same time to
solve the problem as they do today. (B) Projected number of iterations for
QLS to converge as larger devices become available (projection performed by
using Gurobi as a subproblem solver).

100 QAOA runs on the simulator) to find optimal parameters θ. We used this

setup (training on a simulator and running on the quantum device) because of

the limitations of the IBM Q Experience job queue at this time. In our expe-

rience, jobs submitted to the IBM quantum device can spend minutes to hours

in queue, requiring days to complete a full variational parameter optimization

loop. It is our understanding that this will be remedied in the future. The main

downside of this setup is that the variational parameters trained on a simulator

do not encode the noise profile of the device, decreasing the quality of the solu-

tion. This is one of the main factors contributing to slightly slower convergence

for QAOA compared to other methods. In the future, as various QC devices

become available, it will be straightforward to perform QAOA fully on a QC de-

vice. However, even using the current setup we achieved very promising results,

indicating great potential for applying variational quantum-classical methods to

combinatorial optimization problems.
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Our results are presented in Fig. 1. We ran our algorithm on six real-world

networks from the KONECT dataset [81] with up to 410 nodes as our bench-

mark. The networks come from different real world phenomena and include

social and metabolic networks. For each network, we ran 30 experiments with

different random seeds. The same set of seeds was used by the three subprob-

lem solvers, with all solvers starting with the same initial guess and therefore

making the results directly comparable. We fixed the subproblem size at 16

vertices. Our results demonstrate that QLS with both D-Wave QA and QAOA

on IBM Q as quantum subproblem solvers perform similarly in terms of qual-

ity of the solution (modularity) and the number of iterations to convergence,

and are capable of achieving results comparable to state-of-the-art. Our results

are compared to results using the Gurobi Optimizer, which is a state-of-the-art

solver for mathematical programming. We use the Gurobi Optimizer in two

ways: first as a solver for solving the entire problem at once, which we report

as the Global Solver and second as a solver for solving small size subproblems

of fixed size within the local search framework. For solving the entire problem,

the Gurobi Optimizer is unable to reach a provable global optima for most of

the problems within the specified time-frame. For the graph problems of up

to approximately 400 variables, we run Gurobi (as a global solver) for up to

72 hours and the results reported are within an optimality gap of up to 33%.

For the smaller size subproblems of 16 variables, Gurobi was able to find the

optimal solution within less than second. The networks and the set of seeds we

used are available online at http://bit.ly/QLSdata.

The results demonstrate the promise of the proposed approach. We pre-

sented a framework that is able to find 2 communities in graphs of size up to

410 vertices using only NISQ-era devices. We explored the potential of our ap-

proach as new and better QC hardware becomes available in two ways. First, we
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used the classical Gurobi solver [55] to simulate the performance improvements

in QLS as the subproblem size is increased (see Fig. 2B). We generate a 2000

node random graph with realistic community structure and known modular-

ity [82]. Unsurprisingly, QLS finds the optimal solution faster (using fewer local

search iterations) as the subproblem size increases. Second, we demonstrate

the need for quantum acceleration by demonstrating the limitations of existing

state-of-the-art solvers. We used Gurobi [55] as a subproblem solver with sub-

problem size of 200. Fig. 2A shows that for the subproblem of this size, Gurobi

cannot produce a good solution quickly. We compared Gurobi with time limit

0.25s (the running time of QA on D-Wave) with Gurobi with time limit 1000s,

with the assumption that Gurobi would converge to a good solution. We use

the running time of QA as our estimate because at the time of writing we do not

have a good way of measuring the running time of QAOA due to the architec-

ture of the IBM Q Experience. We expect QAOA to have similar performance.

This assumes that quantum methods would scale well to larger problems, which

is a strong assumption. However, the goal here is to motivate the exploration

of quantum optimization heuristics by showing the limitations of classical state-

of-the-art and not to demonstrate quantum advantage. Using a better solution

within the local search enables 25% (4 iterations) improvement in time to con-

vergence (convergence is defined as three iterations with no improvement). This

demonstrates that the subproblems become computationally hard even for sizes

that are small enough to potentially fit on near-term devices. It is important to

note that even though in our experiments Gurobi performed better than other

integer programming solvers, it is quite possible that other solvers can perform

better on this problem, especially after tuning. Indeed, in the past the im-

provements in classical heuristics have forced researchers to downgrade claims

of quantum advantage [83, 84]. However, demonstrating quantum advantage is
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outside of scope of this paper. Instead, we use these results to motivate our

hybrid approach by showing the computational complexity of the subproblems

offloaded to quantum solvers. As quantum solvers improve and become capable

of providing speedups at subproblem level, out QLS will enable us to leverage

these speedups at the global problem level.

6 Conclusion

In the next few years a number of QC hardware implementations are expected

to become mature enough to be applied to practically important problems. QC

using trapped ions [85] and Rydberg atom arrays [86] are just two examples of

quantum hardware now moving out of the laboratory, with the potential to re-

alize quantum advantage. However, none of them promise to deliver more than

a few hundred qubits in the near future. Therefore, we believe the future of QC

is hybrid, with algorithms combining both classical and quantum computation.

QLS presents a path to integrate NISQ-era devices into computational work-

flows in a flexible way, both in terms of adding different hardware backends and

extending to different problems. Classical local search heuristics have proven

useful for a variety of problems in many fields [40]. We believe that QLS can be

similarly extended to problems beyond network community detection. We also

believe that the decomposition approaches like QLS can improve dramatically

the speed and performance of QAOA algorithms on universal quantum comput-

ers, which might the key to achieve quantum advantage on NISQ devices.
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